Projections in Operator Ranges

نویسندگان

  • GUSTAVO CORACH
  • DEMETRIO STOJANOFF
  • Joseph A. Ball
چکیده

If H is a Hilbert space, A is a positive bounded linear operator on H and S is a closed subspace of H, the relative position between S and A−1(S⊥) establishes a notion of compatibility. We show that the compatibility of (A,S) is equivalent to the existence of a convenient orthogonal projection in the operator range R(A1/2) with its canonical Hilbertian structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON THE CONTINUITY OF PROJECTIONS AND A GENERALIZED GRAM-SCHMIDT PROCESS

Let ? be an open connected subset of the complex plane C and let T be a bounded linear operator on a Hilbert space H. For ? in ? let e the orthogonal projection onto the null-space of T-?I . We discuss the necessary and sufficient conditions for the map ?? to b e continuous on ?. A generalized Gram- Schmidt process is also given.

متن کامل

The solutions to some operator equations in Hilbert $C^*$-module

In this paper, we state some results on product of operators with closed ranges and we solve the operator equation $TXS^*-SX^*T^*= A$ in the general setting of the adjointable operators between Hilbert $C^*$-modules, when $TS = 1$. Furthermore, by using some block operator matrix techniques, we nd explicit solution of the operator equation $TXS^*-SX^*T^*= A$.

متن کامل

ec 2 00 5 Lattices of Projections and Operator Ranges in C * - algebras

We say that a C*-algebra A has the ‘sublattice property’ if the set P(A) of all projections in A is a sublattice of the projection lattice of its enveloping von Neumann algebra A∗∗. It is shown that this property is equivalent to the requirement that all pairs of projections have strictly positive ‘angle’. We discuss this property in relation to some results obtained by C. Akemann and by A. Laz...

متن کامل

The solutions to the operator equation $TXS^* -SX^*T^*=A$ in Hilbert $C^*$-modules

In this paper, we find explicit solution to the operator equation $TXS^* -SX^*T^*=A$ in the general setting of the adjointable operators between Hilbert $C^*$-modules, when $T,S$ have closed ranges and $S$ is a self adjoint operator.

متن کامل

The Dichotomy Theorem for evolution bi-families ?

We prove that the operator G, the closure of the first-order differential operator −d/dt + D(t) on L2(R, X), is Fredholm if and only if the not well-posed equation u′(t) = D(t)u(t), t ∈ R, has exponential dichotomies on R+ and R− and the ranges of the dichotomy projections form a Fredholm pair; moreover, the index of this pair is equal to the Fredholm index of G. Here X is a Hilbert space, D(t)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005